Consumo de noticias generadas por IA: impacto emocional e atencional en estudiantes universitarios
DOI:
https://doi.org/10.26441/RC24.2-2025-3843Palabras clave:
inteligencia artificial, desinformación, adicción a internet, estudiantes universitarios, actividad electrodérmica, sociograph, contenido digital, redes socialesResumen
Propósito: El uso generalizado de Internet y redes sociales ha impulsado nuevas formas de comunicación e interacción virtual, especialmente entre estudiantes universitarios de 18 a 24 años, quienes son usuarios intensivos de esta tecnología. En este contexto, la inteligencia artificial (IA) y su capacidad para generar contenido, como noticias, han suscitado debate sobre la veracidad de la información y la necesidad de un consumo responsable para prevenir la desinformación. Además, diversos estudios muestran que el uso excesivo de dispositivos móviles, Internet y redes sociales puede generar adicción y que los textos generados por IA pueden ser tan persuasivos como los escritos por humanos. El objetivo principal de esta investigación es analizar si existen diferencias en la respuesta emocional y la atencional ante noticias periodísticas frente a aquellas generadas por IA (GPT-4) en función del sexo y del nivel de adicción a Internet. Metodología: Se emplea Sociograph, para evaluar la activación fisiológica ante diferentes estímulos, y el test de adicción a Internet de Young. Resultados y conclusiones: El estudio se realizó con 46 estudiantes universitarios. Los resultados muestran una mayor reactividad emocional al consumir noticias generadas por IA, lo que resalta la necesidad de un análisis crítico de la información en la era digital. Aportes originales: Este estudio ofrece evidencia novedosa sobre cómo la información generada por IA puede generar una mayor respuesta emocional que la periodística y plantea nuevas preguntas sobre el papel de la adicción a Internet como factor de riesgo en la susceptibilidad a la desinformación.
Métricas
Citas
Aiger, M., Palacín, M., y Cornejo, J. (2013). La señal electrodérmica mediante Sociograph: metodología para medir la actividad grupal. Revista de Psicología Social, 28(3), 333–347. https://doi.org/10.1174/021347413807719102
Aiger, M., y Palacín, M. (2012). Medición de actividad grupal en relación a la interdependencia mediante Sociograph: medida electrodérmica grupal. Revista iberoamericana para la investigación y el desarrollo educativo (RIDE), 9, 1–23. https://hdl.handle.net/2445/115118
Adalıer, A., y Balkan, E. (2012). The relationship between internet addiction and psychological symptoms. International Journal of Global Education, 1(2), 42–49.
Ballesteros-Aguayo, L., y Ruiz del Olmo, F.J. (2024). Vídeos falsos y desinformación ante la IA: el deepfake como vehículo de la posverdad. Revista de Ciencias de la Comunicación e Información, 29, 1–14. https://doi.org/10.35742/rcci.2024.29.e294
Bavel, J.J.V., Baicker, K., Boggio, P.S. et al. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4, 460–471. https://doi.org/10.1038/s41562-020-0884-z
Brady, W.J., Gantman, A.P., y Van Bavel, J.J. (2020). Attentional capture helps explain why moral and emotional content go viral. Journal of Experimental Psychology: General, 149, 746-756. https://doi.org/10.1037/xge0000673
Brito Hernández, D., González Duarte, J.Y., González Curbelo, V.B., Preciado Martínez, M., y Abreus Mora, J.L. (2021). Influencia de la utilización de las redes sociales en el proceso de comunicación interpersonal. Revista Científica Cultura, Comunicación y Desarrollo, 6(3), 6–13. https://rccd.ucf.edu.cu/index.php/aes/article/view/307
Bucy, E.P., Foley, J. M., Lukito, J., Doroshenko, L., Shah, D.V., Pevehouse, J.C., y Wells, C. (2020). Performing populism: Trump’s transgressive debate style and the dynamics of Twitter response. New Media & Society, 22(4), 634–658. https://doi.org/10.1177/1461444819893984
Buitrago-Ramírez, F., Ciurana-Misol, R., Fernández-Alonso, M., y Tizón-García, J. (2020). Salud mental en epidemias: una perspectiva desde la Atención Primaria de Salud española. Atención Primaria, 52, 93–113, https://doi.org/10.1016/j.aprim.2020.09.004
Busch, P.A., y McCarthy, S. 2021. Antecedents and consequences of problematic smartphone use: a systematic literature review of an emerging research area. Computers in Human Behavior, 114, 1–47. https://doi.org/10.1016/j.chb.2020.106414
Christakis, N.A., y Fowler, J.H. (2012). Social contagion theory: examining dynamic social networks and human behavior. Statistics in Medicine, 32(4), 556-577. https://doi.org/10.1002/sim.5408
Chung, S., Lee, J., y Lee, H.K. (2019). Personal factors, Internet characteristics, and environmental factors contributing to adolescent Internet addiction: a public health perspective. International Journal of Environmental Research and Public Health, 16(23), 4635. https://doi.org/10.3390/ijerph16234635
Cooke, N.A. (2017). Posttruth, truthiness, and alternative facts: information behavior and critical information consumption for a new age. The Library Quarterly, 87(3), 211–221.
Crockett, M.J. (2017). Moral outrage in the digital age. Nature Human Behaviour, 1, 769–771. https://doi.org/10.1038/s41562-017-0213-3
Dempsey, A.E., O’Brien, K.D., Tiamiyu, M.F., y Elhai, J.D. (2019). Fear of missing out (FoMO) and rumination mediate relations between social anxiety and problematic Facebook use. Addictive behaviors reports, 9, 100150. https://doi.org/10.1016/j.abrep.2018.100150
Féré, C. (1888). Note sur les modifications de la résistance électrique sous l’influence des excitations sensorielles et des émotions. Comtes Radus de la Société de Biologie, 40, 217–219.
Fernández-Villa, T., Molina, A.J., García-Martín, M. et al. (2015). Validation and psychometric analysis of the Internet Addiction Test in Spanish among college students. BMC Public Health, 15, 953. https://doi.org/10.1186/s12889-015-2281-5
Firat, M. (2013). Continuous partial attention as a problematic technology use: a case of educators. The Journal of Educators Online, 10(2). https://doi.org/10.9743/jeo.2013.2.6
Franganillo, J. (2023). La inteligencia artificial generativa y su impacto en la creación de contenidos mediáticos. Methaodos: revista de ciencias sociales, 11(2), m231102a10. https://doi.org/10.17502/mrcs.v11i2.710
Fondevila Gascón, J.F., Gutiérrez Aragón, O., Copeiro, M., Villalba Palacín, V., y Polo López, M. (2020). Influencia de las historias de Instagram en la atención y emoción según el género. Comunicar: revista científica iberoamericana de comunicación y educación. https://doi.org/10.3916/C63-2020-04
González, D. (2023). El gráfico que resume la evolución de los periódicos más leídos de España. #RedDePeriodistas. https://reddeperiodistas.com/el-grafico-que-resume-la-evolucion-de-las-audiencias-de-los-periodicos-mas-leidos
Harber, K.D., y Cohen, D.J. (2005). The emotional broadcaster theory of social sharing. Journal of Language and Social Psychology, 24(4), 382–400. http://dx.doi.org/10.1177/0261927X05281426
Hargittai, E. (2010). Digital na(t)ives? Variation in internet skills and uses among members of the “net generation”. Sociological inquiry, 80(1), 92–113. https://doi.org/10.1111/j.1475-682X.2009.00317.x
IAB y GfK. (2024). Observatorio del consumo digital en España: junio 2024. https://iabspain.es/estudio/observatorio-del-consumo-digital-en-espana-junio-2024
Instituto Nacional de Estadística (INE) (2023). Tasa de empleo y diferencias de género en 2023. https://ine.es/ss/Satellite?c=INESeccion_C&cid=1259925528782&p=1254735110672&pagename=ProductosYServicios%2FPYSLayout
Itti, L., y Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306. https://doi.org/10.1016/j.visres.2008.09.007
Jack, C. (2017). Lexicon of lies: terms for problematic information. Data & Society, 3(22), 1094–1096. https://datasociety.net/pubs/oh/DataAndSociety_LexiconofLies.pdf
Kata A. (2012). Anti-vaccine activists, Web 2.0, and the postmodern paradigm: an overview of tactics and tropes used online by the anti-vaccination movement. Vaccine, 30(25), 3778–3789. https://doi.org/10.1016/j.vaccine.2011.11.112
Kemp, S. (2024). Digital 2024: July Statshot. https://wearesocial.com/uk/blog/2024/07/digital-2024-july-global-statshot-report
Kubey, R.W., y Peluso, T. (1990). Emotional response as a cause of interpersonal news diffusion: The case of the space shuttle tragedy. Journal of Broadcasting & Electronic Media, 34(1), 69–76. https://doi.org/10.1080/08838159009386726
Kwok, A.O., y Koh, S.G. (2021). Deepfake: a social construction of technology perspective. Current Issues in Tourism, 24(13), 1798–1802. https://doi.org/10.1080/13683500.2020.1738357
Lewandowsky, S., Ecker, U.K.H., Seifert, C.M., Schwarz, N., y Cook, J. (2012). Misinformation and its correction: Continued influence and successful debiasing. Psychological Science in the Public Interest, 13, 106–131. https://doi.org/10.1177/1529100612451018
López-González, H., Sosa, L., Sánchez, L. y Faure-Carvallo, A. (2023). Media and information literacy and critical thinking: a systematic review. Revista Latina de Comunicación Social, 81, 399–423. https://doi.org/10.4185/rlcs-2023-1939
Maldita.es (2021). Desinformación en WhatsApp: el chatbot de Maldita.es y el atributo “reenviado frecuentemente”. https://maldita.es/uploads/public/docs/desinformacion_en_whatsapp_ff.pdf
Marciel Pariente, R. (2022). Populismo y discursos del odio: un matrimonio evitable (en teoría). Isegoría, 67, e06. https://doi.org/10.3989/isegoria.2022.67.06
Mendiguren, T., Pérez Dasilva, J., y Meso Ayerdi, K. (2020). Actitud ante las fake news: estudio del caso de los estudiantes de la Universidad del País Vasco. Revista de comunicación, 19(1), 171–184. https://doi.org/10.26441/RC19.1-2020-A10
Nazar, S., y Bustam, M.R. (2020). Artificial intelligence and new level of fake news. En: IOP Conference Series: Materials Science and Engineering, 879(1), 012006. IOP Publishing. https://doi.org/10.1088/1757-899X/879/1/012006
Neuman, N., Fletcher, R., Eddy, K., Robertson, C.T., y Nielsen, R K. (2023). Reuters Institute Digital News Report 2023. Reuters Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2023
Nicoli, N., Louca, S. y Iosifidis, P. (2022). Social Media, News Media, and the Democratic Deficit: Can the Blockchain Make a Difference? TripleC, 20(2), 163-178. https://doi.org/10.31269/triplec.v20i2.1322
Reeve, J. (1994). Motivación y emoción. McGraw-Hill.
Russell, J.A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295X.110.1.145
Sádaba, C. y Salaverría, R. (2023). Combatir la desinformación con alfabetización mediática: análisis de las tendencias en la Unión Europea. Revista Latina de Comunicación Social, 81, 1-17. https://doi.org/10.4185/RLCS-2023-1552
Salaverría, R., Buslón, N., López-Pan, F., León, B., López-Goñi, I., y Erviti, M.C. (2020). Desinformación en tiempos de pandemia: tipología de los bulos sobre la covid-19. Profesional de la información, 29(3). https://doi.org/10.3145/epi.2020.may.15
Sánchez, L., Villanueva Baselga, S., y Faure-Carvallo, A. (2024). Ideología política, populismo, alfabetización informacional y pensamiento crítico: desafíos para el futuro profesorado. Revista Latina De Comunicación Social, (82). https://doi.org/10.4185/rlcs-2024-2268
Schwarz, N. (2012). Feelings-as-information theory. En: P.A.M. Van Lange, A.W. Kruglanski, y E.T. Higgins (eds.). Handbook of theories of social psychology (pp. 289–308). Sage. https://doi.org/10.4135/9781446249215.n15
Shu, K., Wang, S., Lee, D., y Liu, H. (2020). Mining disinformation and fake news: concepts, methods, and recent advancements. En: K. Shu, S. Wang, D. Lee y H. Liu (eds.). Disinformation, misinformation, and fake news in social media: lecture notes in social networks (pp. 1–19). Springer. https://doi.org/10.1007/978-3-030-42699-6_1
Tandoc Jr, E.C., Lim, Z.W., y Ling, R. (2018). Defining “fake news”: a typology of scholarly definitions. Digital Journalism, 6(2), 137–153. http://dx.doi.org/10.1080/21670811.2017.1360143
Tapia, A., y Martín, E. (2017). Neurociencia y publicidad: un experimento sobre atención y emoción en publicidad televisiva. Innovar, 27(65), 81–92. https://doi.org/10.15446/innovar.v27n65.65063
Valenzuela, S. (2024). Cuando los algoritmos son editores: cómo las redes sociales, la IA y la desinformación alteran el consumo de noticias. Comunicación y Medios, 33(49), 186–191. https://doi.org/10.5354/0719-1529.2024.74976
Vraga, E.K., y Bode, L. (2020). Defining misinformation and understanding its bounded nature: using expertise and evidence for describing misinformation. Political Communication, 37(1), 136–144. https://doi.org/10.1080/10584609.2020.1716500
Vosoughi, S., Roy, D., y Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559
Weeks, B.E. (2023). Emotion, digital media, and misinformation. En: R.L. Nabi y J.G. Myrick (eds.). Emotions in the Digital World. Oxford University Press. https://doi.org/10.1093/oso/9780197520536.003.0022
Weeks, B.E., y Garrett, R.K. (2019). Emotional characteristics of social media and political misperceptions. En: J.E. Katz y K.K. Mays (eds.). Journalism and Truth in an Age of Social Media (pp. 236–250). Oxford University Press. https://doi.org/10.1093/oso/9780190900250.003.0016
Yin, Rober K. (2014). Case study research: design and methods. Sage.
Young, K.S. (1998). Internet addiction: the emergence of a new clinical disorder. CyberPsychology & Behavior, 1(3), 237–244. https://doi.org/10.1089/cpb.1998.1.237
Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676. https://doi.org/10.1016/S0140-6736(20)30461-X
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista de Comunicación

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.