Navegando con (des)comodidad por las noticias generadas por IA: explorando diferencias entre grupos y la importancia del uso de las redes sociales en Portugal
DOI:
https://doi.org/10.26441/RC24.2-2025-4049Palabras clave:
Inteligencia Artificial, IA Generativa, Estudios de Audiencia, Redes Sociales, Alfabetización algorítmica, Aceptación de la IA, Consumo de Noticias, PeriodismoResumen
Propósito. El creciente papel de la IA en la producción de noticias plantea cuestiones sobre la aceptación de la audiencia. Se exploran diferencias en los niveles de comodidad con noticias generadas por IA y asistidas por IA, considerando el efecto de las fuentes principales de noticias. Se plantea que el uso de redes sociales como principal acceso a las noticias puede influir en la comodidad con la IA debido a la familiaridad con la personalización algorítmica. Metodología. Se realizó un análisis cuantitativo con 2012 internautas portugueses. Se aplicaron pruebas no paramétricas para comparaciones de grupo y se creó un índice compuesto de comodidad con la IA para evaluar interacciones entre conocimiento de IA y fuente principal de noticias. Resultados y conclusiones. Se observa mayor comodidad cuando la IA actúa como asistente en vez de generadora de noticias. Existen diferencias significativas entre grupos según factores demográficos y confianza. Se identifican efectos en la comparación entre distintos niveles de conocimiento de IA y entre usuarios de redes sociales y de noticias tradicionales. Aunque no estadísticamente significativo, el efecto de interacción muestra que los usuarios con mayor conocimiento de IA que confían en redes sociales como su principal fuente de noticias presentan un aumento en la comodidad con las noticias generadas por IA. Contribución. Estos resultados resaltan la relevancia de la fuente principal de noticias en la aceptación de la IA en el periodismo, especialmente ante un entorno mediático cambiante, donde tecnologías como chatbots podrían desempeñar un papel clave en la distribución de noticias.
Métricas
Citas
Aggarwal, M. S., Singhal, G., & Malhotra, M. S. (2024). Artificial Intelligence (AI) in Social Media: Current Perceptions and Future Outlook. Journalism and Media, 3(1), 13-26. https://doi.org/10.3390/journalmedia3010002
Araujo, T., Helberger, N., Kruikemeier, S., & de Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & Society, 35, 611–623. https://doi.org/10.1007/s00146-019-00931-w
Arguedas, A. R. (2024). Public attitudes towards the use of AI in journalism. In N. Newman, R. Fletcher, C. T. Robertson, A. R. Arguedas, & R. K. Nielsen, Digital news report 2024 (pp. 39–43). Reuters Institute for the Study of Journalism. https://doi.org/10.60625/risj-vy6n-4v57
Baldassarre, M. T., Caivano, D., Fernandez Nieto, B., Gigante, D., & Ragone, A. (2023, September). The social impact of generative ai: An analysis on chatgpt. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 363-373). https://doi.org/10.1145/3582515.3609555
Barrolleta, A., & Sandoval-Martín, T. (2024). Artificial intelligence versus journalists: The quality of automated news and bias by authorship using a Turing test. Anàlisi: Quaderns de Comunicació i Cultura, 70, 15-36. https://doi.org/10.5565/rev/analisi.3681
BBC & Ipsos. (2024). Embedding the audience: Putting audiences at the heart of Generative AI. BBC & Ipsos.
Beckett, C. & Yaseen, M. (2023). Generating Change: A global survey of what news organisations are doing with AI. The London School of Economics and Political Science.
Bhandari, A., & Bimo, S. (2022). Why’s everyone on TikTok now? The algorithmized self and the future of self-making on social media. Social media+ society, 8(1). https://doi.org/10.1177/20563051221086241
Bonini, T., & Treré, E. (2024). Algorithms of resistance: The everyday fight against platform power. Mit Press.
Borg, J. S., Sinnott-Armstrong, W., & Conitzer, V. (2024). Moral AI: And how we get there. Random House.
Bruns, A. (2019). Are filter bubbles real? John Wiley & Sons.
Buyl, P., Graefe, A., & Trilling, D. (2024). Buyl, M., Rogiers, A., Noels, S., Dominguez-Catena, I., Heiter, E., Romero, R., … De Bie, T. (2024). Large language models reflect the ideology of their creators. arXiv. https://doi.org/10.48550/arXiv.2410.18417
Choung, H., David, P., & Ross, A. (2022). Trust in AI and Its Role in the Acceptance of AI Technologies. International Journal of Human–Computer Interaction, 39(9), 1727–1739. https://doi.org/10.1080/10447318.2022.2050543
Cardoso, G., Paisana, M., & Pinto-Martinho, A. (2024). Digital News Report Portugal 2024. OberCom - Observatório da Comunicação.
Carifio. J.. & Perla. R. (2008). Resolving the 50-year debate around using and misusing Likert scales. Medical Education. 42(12). 1150–1152. https://doi.org/10.1111/j.1365-2923.2008.03172.x
Carlson, M. (2015). The Robotic Reporter: Automated journalism and the redefinition of labor, compositional forms, and journalistic authority. Digital Journalism, 3(3), 416–431. Scopus. https://doi.org/10.1080/21670811.2014.976412
Couraceiro, P., & Paisana, M. (2024). From Algorithmic Personalization to Journalistic Mediation: Changes in the Preferences of Young Portuguese in Online News Consumption. Media & Jornalismo, 24(45), e4504. https://doi.org/10.14195/2183-5462_45_4
Coddington, M. (2014). Clarifying Journalism’s Quantitative Turn: A typology for evaluating data journalism, computational journalism, and computer-assisted reporting. Digital Journalism, 3(3), 331–348. https://doi.org/10.1080/21670811.2014.976400
Clerwall, C. (2014). Enter the Robot Journalist: Users’ perceptions of automated content. Journalism Practice, 8(5), 519–531. https://doi.org/10.1080/17512786.2014.883116
Cui, D., & Wu, F. (2021). The influence of media use on public perceptions of artificial intelligence in China: evidence from an online survey. Information Development, 37(1), 45-57. https://doi.org/10.1177/0266666919893411
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
DeCoster. J.. Iselin. A.-M. R.. & Gallucci. M. (2009). A conceptual and empirical examination of justifications for dichotomization. Psychological Methods. 14(4). 349–366. https://doi.org/10.1037/a0016956
de-Lima-Santos, M.-F., & Ceron, W. (2022). Artificial Intelligence in News Media: Current Perceptions and Future Outlook. Journalism and Media, 3(1), Article 1. https://doi.org/10.3390/journalmedia3010002
Diakopoulos, N. (2019). Automating the News: How Algorithms Are Rewriting the Media. Harvard University Press.
Dörr, K. N. (2016). Mapping the field of Algorithmic Journalism. Digital Journalism, 4(6), 700–722. https://doi.org/10.1080/21670811.2015.1096748
Fast, E., & Horvitz, E. (2017). Long-Term Trends in the Public Perception of Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). https://doi.org/10.1609/aaai.v31i1.10635
Fitzsimons. G. J. (2008). Death to Dichotomizing. Journal of Consumer Research. 35(1). 5–8. https://doi.org/10.1086/589561
Gerlich, M. (2023). Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. Social Sciences, 12(9), 502. https://doi.org/10.3390/socsci12090502
Gondwe, G. (2025). Perceptions of AI-driven news among contemporary audiences: A study of trust, engagement, and impact. AI & SOCIETY. https://doi.org/10.1007/s00146-025-02294-x
Graefe, A., & Bohlken, N. (2020). Automated Journalism: A Meta-Analysis of Readers’ Perceptions of Human-Written in Comparison to Automated News. Media and Communication, 8(3), 50-59. https://doi.org/10.17645/mac.v8i3.3019
Graefe, A., Haim, M., Haarmann, B., & Brosius, H.-B. (2016). Readers’ perception of computer-generated news: Credibility, expertise, and readability. Journalism, 19(5), 595-610. https://doi.org/10.1177/1464884916641269
Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022). " I think this is the most disruptive technology": Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. arXiv. https://doi.org/10.48550/arXiv.2212.05856
Heiselberg, L., Blom, J., & Dalen, A. V. (2022). Automated News Reading in the Neural Age: Audience Reception and Perceived Credibility of a News Broadcast Read By a Neural Voice. Journalism Studies, 23(8), 896-914. https://doi.org/10.1080/1461670X.2022.2052346
Henestrosa, A. L., Greving, H., & Kimmerle, J. (2023). Automated journalism: The effects of AI authorship and evaluative information on the perception of a science journalism article. Computers in Human Behavior, 138, 107445. https://doi.org/10.1016/j.chb.2022.107445
Ibrahim, M., Hossain, A., & Rahman, S. (2025). The technology acceptance model and adopter type analysis in the context of artificial intelligence. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1496518
Iacobucci. D.. Posavac. S. S.. Kardes. F. R.. Schneider. M. J.. & Popovich. D. L. (2015). The median split: Robust. refined. and revived. Journal of Consumer Psychology. 25(4). 690–704. https://doi.org/10.1016/j.jcps.2015.06.014
Jacome, I. J. M., Bossio, J. I. D. la H., Guiliany, J. G., & Pérez, Y. R. (2021). The Metrics of the Audience: The New Journalistic Gut. Estudos Em Comunicação, 33. https://ojs.labcom-ifp.ubi.pt/ec/article/view/846
Jang, W. (Eric), Kwak, D. H., & Bucy, E. (2022). Knowledge of automated journalism moderates evaluations of algorithmically generated news. New Media & Society, 26(10), 5898-5922. https://doi.org/10.1177/14614448221142534
Jia, C., & Johnson, T. (2021). Source Credibility Matters: Does Automated Journalism Inspire Selective Exposure?. International Journal Of Communication, 15, 22. Retrieved from https://ijoc.org/index.php/ijoc/article/view/16546
Jönsson, J. (2021). AI acceptance and attitudes: People’s perception of healthcare and commercial AI applications (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176507
Jung, J., Song, H., Kim, Y., Im, H., & Oh, S. (2017). Intrusion of software robots into journalism: The public's and journalists' perceptions of news written by algorithms and human journalists. Computers in human behavior, 71, 291–298. https://doi.org/10.1016/j.chb.2017.02.022
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
Krumpal, I. (2013). Determinants of social desirability bias in sensitive surveys: a literature review. Quality & quantity, 47(4), 2025-2047.
Lambert, S.I., Madi, M., Sopka, S. et al. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. npj Digital Medicine, 6. https://doi.org/10.1038/s41746-023-00852-5
Latar, N. L. (2018). Robot Journalism: Can Human Journalism Survive? World Scientific.
Leiter, C., Zhang, R., Chen, Y., Belouadi, J., Larionov, D., Fresen, V., & Eger, S. (2024). Chatgpt: A meta-analysis after 2.5 months. Machine Learning with Applications, 16. https://doi.org/10.1016/j.mlwa.2024.100541
Lermann Henestrosa, A., & Kimmerle, J. (2024). The Effects of Assumed AI vs. Human Authorship on the Perception of a GPT-Generated Text. Journalism and Media, 5(3), 1085-1097. https://doi.org/10.3390/journalmedia5030069
Lewis, S. C., & Westlund, O. (2014). Big Data and Journalism: Epistemology, expertise, economics, and ethics. Digital Journalism, 3(3), 447–466. https://doi.org/10.1080/21670811.2014.976418
Li, W., & Zheng, X. (2024). Social media use and attitudes toward AI: The mediating roles of perceived AI fairness and threat. Human Behavior and Emerging Technologies, 2024(1). https://doi.org/10.1155/2024/3448083
Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90–103. https://doi.org/10.1016/j.obhdp.2018.12.005
Longoni, C., Fradkin, A., Cian, L., & Pennycock, G. (2022). News from Generative Artificial Intelligence Is Believed Less. FAccT '22: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, 97-106. https://doi.org/10.1145/3531146.3533077
Mahony, S., & Chen, Q. (2024). Concerns about the role of artificial intelligence in journalism, and media manipulation. Journalism, 0(0). https://doi.org/10.1177/14648849241263293
Merten, L. (2020). Block, Hide or Follow—Personal News Curation Practices on Social Media. Digital Journalism, 9(8), 1018–1039. https://doi.org/10.1080/21670811.2020.1829978
Miyazaki, K., Murayama, T., Uchiba, T., An, J., & Kwak, H. (2024). Public perception of generative AI on Twitter: an empirical study based on occupation and usage. EPJ Data Science, 13(1), 2. https://doi.org/10.1140/epjds/s13688-023-00445-y
Mohamed, E. A. S., Osman, M. E. & Mohamed, B. A. (2024). The Impact of Artificial Intelligence on Social Media Content. Journal of Social Sciences, 20(1), 12-16. https://doi.org/10.3844/jssp.2024.12.16
Newman, N., Fletcher, R., Robertson, C. T., Ross Arguedas, A., & Nielsen, R. K. (2024). Reuters Institute digital news report 2024. Reuters Institute for the study of Journalism. https://doi.org/10.60625/risj-vy6n-4v57
Nitin, R., Choudhary, S., & Rane, J. (2024). Acceptance of artificial intelligence: key factors, challenges, and implementation strategies. SSRN. https://dx.doi.org/10.2139/ssrn.4842167
Noble, S. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press. https://doi.org/10.18574/nyu/9781479833641.001.0001
Norman. G. (2010). Likert scales. levels of measurement and the ‘laws’ of statistics. Advances in Health Sciences Education: Theory and Practice. 15(5). 625–632. https://doi.org/10.1007/s10459-010-9222-y
Parasuraman, A. (2000). Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Harvard University Press
Pavlik, J. (2000). The Impact of Technology on Journalism. Journalism Studies, 1(2), 229–237. https://doi.org/10.1080/14616700050028226
Porlezza, C. (2024). The datafication of digital journalism: A history of everlasting challenges between ethical issues and regulation. Journalism, 25(5), 1167-1185. https://doi.org/10.1177/14648849231190232
Qi, W., Pan, J., Lyu, H., & Luo, J. (2024). Excitements and concerns in the post-chatgpt era: Deciphering public perception of ai through social media analysis. Telematics and Informatics, 92. https://doi.org/10.1016/j.tele.2024.102158
Sadiku, M. N., Ashaolu, T. J., Ajayi-Majebi, A., & Musa, S. M. (2021). Artificial intelligence in social media. International Journal of Scientific Advances, 2(1), 15-20. https://doi.org/10.51542/ijscia.v2i1.4
Sánchez-García, P., Diez-Gracia, A., Mayorga, I. R., & Jerónimo, P. (2025). Media Self-Regulation in the Use of AI: Limitation of Multimodal Generative Content and Ethical Commitments to Transparency and Verification. Journalism and Media, 6(1), 29. https://doi.org/10.3390/journalmedia6010029
Saurwein, F., & Spencer-Smith, C. (2021). Automated trouble: The role of algorithmic selection in harms on social media platforms. Media and Communication, 9(4), 222-233. https://doi.org/10.5167/uzh-232380
Shin, D. (2020). User Perceptions of Algorithmic Decisions in the Personalized AI System:Perceptual Evaluation of Fairness, Accountability, Transparency, and Explainability. Journal of Broadcasting & Electronic Media, 64(4), 541–565. https://doi.org/10.1080/08838151.2020.1843357
Shin, D. (2022). How do people judge the credibility of algorithmic sources? AI & Society, 37, 81-96. https://doi.org/10.1007/s00146-021-01158-4
Shin, D., Zhong, B., & Biocca, F.A. (2020). Beyond user experience: What constitutes algorithmic experiences? International Journal of Information Management, 52. https://doi.org/10.1016/j.chb.2020.106454
Silverstone, R., & Hirsch, E. (Eds.). (1992). Consuming Technologies: Media and Information in Domestic Spaces. Routledge.
Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics and Informatics, 47. https://doi.org/10.1016/j.tele.2019.101324
Spohr, D. (2017). Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Business information review, 34(3), 150-160. https://doi.org/10.1177/0266382117722
Swart, J. (2021). Experiencing algorithms: How young people understand, feel about, and engage with algorithmic news selection on social media. Social media+ society, 7(2). https://doi.org/10.1177/20563051211008828
Taherdoost, H. (2023). Machine learning algorithms: features and applications. In Encyclopedia of Data Science and Machine Learning (pp. 938-960). IGI Global. https://doi.org/10.4018/978-1-7998-9220-5.ch054
Tandoc Jr., E. C., Yao, L. J., & Wu, S. (2020). Man vs. Machine? The Impact of Algorithm Authorship on News Credibility. Digital Journalism, 8(4), 548–562. https://doi.org/10.1080/21670811.2020.1762102
Tucker, T. (2011). What influences young adults’ decision to adopt new technology?. The Elon Journal of Undergraduate Research in Communications, 2(2), 147-157.
Túñez-López, J. M., Toural-Bran, C., & Frazão-Nogueira, A. G. (2020). From Data Journalism to Robotic Journalism: The Automation of News Processing. Studies in Big Data, 70, 17–28. Scopus. https://doi.org/10.1007/978-3-030-36315-4_2
Vogels, E.A. (9th September 2019). Millennials stand out for their technology use, but older generations also embrace digital life. Pew Research Center. Available at: https://www.pewresearch.org/short-reads/2019/09/09/us-generations-technology-use/
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
Wang, S. (2023). Factors related to user perceptions of artificial intelligence (AI)-based content moderation on social media. Computers in Human Behavior, 149. https://doi.org/10.1016/j.chb.2023.107971
Wölker, A., & Powell, T. E. (2018). Algorithms in the newsroom? News readers’ perceived credibility and selection of automated journalism. Journalism, 22(1), 86-103. https://doi.org/10.1177/1464884918757072
Wu, S., Tandoc, E. C., Jr., & Salmon, C. T. (2019). Journalism Reconfigured: Assessing human–machine relations and the autonomous power of automation in news production. Journalism Studies, 20(10), 1440–1457. Scopus. https://doi.org/10.1080/1461670X.2018.1521299
Yi, M., & Choi, H. (2024). What drives the acceptance of AI technology? The role of expectations and experiences. arXiv. https://doi.org/10.48550/arXiv.2306.13670
Zhang, C., Schießl, J., Plößl, L. et al. (2023). Acceptance of artificial intelligence among pre-service teachers: a multigroup analysis. International Journal of Educational Technology in Higher Education, 20(49). https://doi.org/10.1186/s41239-023-00420-7
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista de Comunicación

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.